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Abstract

Simulation is an important tool in modern day engineering. It allows engineers to test de-

signs and predict behaviours without requiring expensive experimental testing. Simulations

can often be time consuming and require hours or days to complete in order to achieve

acceptable accuracy. One way to improve performance without simply adding more com-

putational power is to use Graphics Processing Units (GPUs). Unlike CPUs, GPUs run

computations in parallel which can make simulations a lot faster if the same calculations

are run many times. This project implements the Discrete Element Method using GPUs in

order to analyse particle agglomeration.

A simple particle simulation is developed with Python in order to understand the methodolo-

gies required for the project. A GPU based particle simulation is developed using OpenCL,

capable of running simulations with large numbers of particles (tested up to 107 particles).

This simulation is then used to observe how agglomerates form with varying simulation

properties. The analysis provides a strong basis for future analysis of agglomerate forma-

tion in Taylor-Green Vortex flow, showing general system behaviour and key areas for future

analysis.
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Nomenclature

ẍ Second derivative of position with respect to time (acceleration)

δ Particle Body Surface Overlap Distance

δe Particle Effect Surface Overlap Distance
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n̂ Collision Normal Unit Vector
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Fd Drag Force Vector

Fg Gravitational Force Vector
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ρp Particle Density
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Chapter 1

Introduction

1.1 Project Overview

Simulation is an important tool in modern day engineering. It allows engineers to test de-

signs and predict behaviours without requiring expensive experimental testing. Simulation

is in widespread use in many key areas of engineering such as fluid dynamics and structural

design. Simulations can often be time consuming and require hours or days to complete in

order to achieve acceptable accuracy. It is common to construct super-computers in order

to achieve better performance and faster simulations. However, this is often not economical

or widely available. One way to improve performance without simply adding more com-

putational power is to use Graphics Processing Units (GPUs). Unlike CPUs, GPUs run

computations in parallel which can make simulations a lot faster if the same calculations

are run many times.

Methods used to simulate systems vary and there are many programs that offer different

tools for different jobs. The method used in this project is the Discrete Element Method, a

way of simulating the motion and interactions of particles as discrete entities. This project

implements the Discrete Element Method using a GPU in order to analyse particle agglom-

eration.

1.2 Aims and Objectives

The aim of this project is to observe how agglomerates form with varying simulation prop-

erties using a particle simulation developed with OpenCL. This can be separated into three

main objectives:

1. Develop a simple particle simulation in order to understand the methodologies required

for the project.

2. Develop a particle simulation that can simulate large numbers of particles (up to 107

particles) using OpenCL for GPUs.

3. Simulate particles in a fluid with collisions and observe how agglomerates form, includ-

ing statistical analysis of agglomerate properties, as different simulation properties are

12



CHAPTER 1. INTRODUCTION Elijah Andrews

varied.

1.3 Report Structure

This report has three main parts. Firstly, the model being used and its numerical imple-

mentation are discussed. Chapter 2 provides detail on the mathematical model and the

analytic equations of motion for the model. Chapter 3 shows how the mathematical model

is implemented numerically and has some comparisons of method accuracy.

The second part explains how the model is implemented programmatically. Chapter 4

discusses the initial implementation of the algorithm in Python. Chapter 5 contains a back-

ground in Graphics Processing Units and how OpenCL functions. It also discusses the

details of the final OpenCL implementation. Both of these chapters contain relevant simu-

lation verification test cases.

The final part is the application of the simulation to the study of how agglomerates form

with varying particle properties and initial conditions. This demonstrates the capabilities

of the simulation and provides some useful insights.

1.4 Previous Work

The project directly preceding this one was ’Programming GPU Cards with OpenCL to

Predict the Motion of Billions of Particles’[1] by Andrew Chow. His project developed a

parallelised particle-fluid simulator using OpenCL. Particle-particle interactions were not

considered in his project. This project will expand upon his by implementing particle-

particle interactions using the Discrete Element Method (explained in Chapter 2).

The DEM has been implemented many times since it was originally devised by Cundall

in 1971[2]. Many implementations have been CPU based with no parallelisation, but in

recent years implementations have tended to be parallelised. The vast majority of parallel

DEM implementations[3][4][5][6][7] have used NVIDIA’s CUDA platform which can only run

on NVIDIA GPUs. These implementations are not usable on other hardware. One solution

to this problem is to use the Open Computing Language (OpenCL). OpenCL code can be

executed across heterogeneous platforms. This means that an implementation programmed

in OpenCL can be accessible to most users. One paper described an implementation that did

use OpenCL but the application was for a real-time interactive simulation and so relatively

low numbers of particles were used (16,000 was the maximum benchmarked)[8]. Another

paper briefly describes an adaptation of a simple existing implementation and its perfor-

mance, however the details are not extensive and testing was only done with 217 (131,072)

particles[9].

This project draws from the work of Rob Tuley whose PhD thesis[10] outlined some key

aspects of the DEM as well as its application in powder simulations.

13



Chapter 2

The Discrete Element Method

The Discrete Element Method (DEM) is a numerical method for simulating how particles

move and interact. Individual particles of a medium are treated as separate rather than

making continuum assumptions. This makes it a good method for modelling behaviours in

granular materials such as sand, grain, or powder.

There are two main categories of particle simulation: soft and hard models. Soft models

allow overlap and treat collisions as sustained events whereas hard models treat collisions as

an instantaneous event with no overlap and model forces as an impulse. Soft collision models

have broader applicability as they can model sustained contact and multiple simultaneous

collisions[11].

2.1 Particle Definition

The DEM can be used with arbitrary polyhedra, however for simplicity this project will

only consider spherical particles as defined in Figure 2.1 where Op is the particle origin, sb

is the body surface, and se is the effect surface. The diameters of the particle body surface

and particle effect surface are denoted by db and de, respectively.

The body surface is the surface of the particle considered to be the physical boundary,

if two particles’ body surfaces are touching or overlapping they are considered to be in

contact. The effect surface is the surface of a particle within which cohesion effects are

considered. If two particles’ effect surfaces are touching or overlapping they are considered

to be interacting.

sb se
Op

Figure 2.1: Definition of a particle.
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2.2 DEM Forces

The Discrete Element Method can simulate a number of different forces using a variety

of models. The merits of some of the most commonnly applied models are discussed in

Tuley[10]. For this project the simplest force models have been chosen to reduce the overall

complexity of the simulation.

2.2.1 Normal Contact Force

In a real elastic collision there will be some deformation of the particles. Calculating the

deformation itself would be computationally expensive and would not be of interest in the

study of particle population behaviours. The interaction can be modelled as a linear spring-

dashpot arrangement where the overlap between the two particles is the compression of the

spring. The damping is based on the relative velocity in the normal direction. The force

is thus described by Equation 2.1 where ke is the normal contact stiffness, δ is the particle

overlap, n̂ is the unit vector normal to the collision, η is the damping coefficient, and un is

the normal velocity.

Fn = keδn̂− ηun (2.1)

2.2.2 Tangential Contact Force

The tangential contact force is the friction between two particle surfaces. There are two

regimes of friction force, static and dynamic. In the static regime there is no tangential

motion and the friction acts to stop motion. In the dynamic regime two surfaces are sliding

across one another and the friction acts to arrest this motion. The static regime usually

has a higher friction coefficient than the dynamic regime. The simplest and least compu-

tationally expensive model for friction is a ’complex friction model’. This calculates values

for both of the regimes and applies the minimum of the two calculations.[10]

Tuley[10] mentions two common static friction models, one without damping and one with

damping. These are shown in Equation 2.2 and Equation 2.3 where kf is the friction stiff-

ness, ζ is the tangential displacement during the interaction, t̂ is the unit vector tangential

to the collision, η is the damping coefficient, and ut is the velocity tangential to the collision.

The merit of these models is discussed in Section 3.2.

Fstatic
t = −kfζ t̂ (2.2)

Fstatic
t = −kfζ t̂− ηut (2.3)

The dynamic regime friction force is calculated with Equation 2.4 where µ is the coefficient

of friction.

Fdynamic
t = −µ|Fn |̂t (2.4)

The final tangential friction force is defined in Equation 2.5.

Ft = −t̂min(|Fstatic
t |, |Fdynamic

t |) (2.5)

15



CHAPTER 2. THE DISCRETE ELEMENT METHOD Elijah Andrews

2.2.3 Cohesion Force

Cohesion is the attractive force between two bodies of the same material, adhesion is the

attractive force between two bodies of different materials. For this project all of the particles

and walls are assumed to be of the same material and so only cohesion is considered, however

adhesion could be modelled using varying cohesion stiffnesses. Although there are many

complex effects that could be considered[10], a basic linear approximation can be used to

model a cohesion force. This is defined in Equation 2.6 where kc is the cohesion stiffness

and δe is the particle effect surface overlap.

Fc = kcδen̂ (2.6)

2.2.4 Drag Force

Assuming low Reynolds numbers, Stokes’s flow relationships can be used. This includes

Stokes’s drag, defined in Equation 2.7, where m is particle mass, τp is particle relaxation

time, uf is fluid velocity, and u is particle velocity. Stokes’s drag applies to spheres moving

through a very low Reynolds number fluid. In this situation the drag force is approximately

proportional to velocity.

Fd =
m

τp
(uf − u) (2.7)

The particle relaxation time, τp is an approximate timescale describing how the particle’s

velocity changes in a fluid due to drag. Assuming Stokes’s drag on a spherical particle,

τp can be defined by Equation 2.8 where ρp is the particle density, db is the particle body

diameter, and µ is the dynamic viscosity of the fluid[1].

τp =
ρpd

2
b

18µ
(2.8)

2.2.5 Gravitational Force

The gravity force is simple and defined in Equation 2.9.

Fg = mg (2.9)

2.3 Equations of Motion

The motion of particles in the simulation is governed by Equation 2.11. This is derived from

Newton’s Second Law of motion. The total force, F is a combination of forces as shown in

Equation 2.12. Fn, Ft, Fc, Fg, and Fd are the forces defined in Section 2.2.

dx

dt
= u (2.10)

du

dt
=

F

m
(2.11)

F = Fn + Ft + Fc + Fg + Fd (2.12)
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2.4 Useful Results

2.4.1 Reduced Mass

When considering the motion of two particles relative to one another a useful property is

the reduced mass. The reduced mass is an equivalent combined mass of two particles when

calculating relative motion between them. Equation 2.13 shows how the reduced mass is

used instead of a single particle mass when relating the force in a collision to the relative

acceleration between the particles.

The reduced mass is derived from the relative acceleration of two particles in a collision. To

determine the relative acceleration between the two particles, the two accelerations must

be combined. It is known that F1 and F2 are equal and opposite. Finding the relative

acceleration results in Equation 2.13. It is in a form similar to Newton’s Second Law but

with the usual mass replaced bye the reduced mass of the two particles (Equation 2.14).

This reduced mass can be used instead of particle mass in Equation 2.11 when considering

relative motion of particles.

F1 = m1a1, F2 = m2a2

F1 = −F2

arel = a2 − a1

=
F2

m2
− F1

m1

=
F2

m2
+
F2

m1

= F2

(m1 +m2

m1m2

)
F2 =

( m1m2

m1 +m2

)
arel (2.13)

mreduced =
m1m2

m1 +m2
(2.14)

It should be noted that Equation 2.14 reduces to m1 if m2 tends to infinity. This is useful

when considering static particles with infinite density and is used extensively for verifying

simulation results (see Section 3.3).

2.4.2 Collision Duration

The collision duration is the time it takes for a collision to occur. This is important because

if the simulation timestep is not low enough there will not be enough steps within a collision

to produce accurate results. The collision duration is fully derived in Section A.1.1 and

is calculated using Equation 2.15. The collision duration is often simplified to Equation

2.16[10].

tcol =

√
m

ke

√
π2 + ln(ε)2 (2.15)

tcol = π

√
m

ke
(2.16)
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2.4.3 Coefficient of Restitution

The coefficient of restitution is the ratio of speed before and after a collision. For a damped

collision the coefficient of restitution is between 0 and 1. The coefficient of restitution for a

normal collision is fully derived in Section A.1.2 and is related to the damping coefficient,

η, by Equation 2.17.

η = −2ln(ε)

√
mke

π2 + ln(ε)2
(2.17)

2.5 Particle Rotation

For arbitrary polyhedral particles rotation can be important since the particles will collide

at different angles and it can make a significant difference to the result. With spherical

particles this is less important since the collision geometry is always the same. Spherical

particles can rearrange more easily if rotation is considered but reasonably accurate results

can still be obtained without implementing rotation. The aim of this project is to analyse

how agglomerates form with a change in simulation properties so having fully accurate

results is not necessary as long as the changes in behaviour can be captured.

2.6 Collision Detection

A key part of the DEM is effective collision detection. If approached naively collision de-

tection is simply calculating the overlap for every particle with every other particle. This

is extremely inefficient and causes the simulation to run in O(N2) time, where N is the

number of particles. To improve efficiency this process can be split into two phases. Firstly,

the broad phase collision detection determines which particles could collide with which other

particles. This reduces the number of particle collisions that have to be resolved. The second

phase, collision resolution, resolves the collisions by measuring overlap and then calculating

forces if necessary. The goal of the broad phase is to allow the simulation to run in O(N)

time. Figure 2.2 shows the basic simulation loop and the different simulation phases.

There are many different algorithms that can be used for broad phase collision detection,

varying in complexity and efficiency. Although some of the more complex algorithms were

considered, the gain in efficiency was not significant enough to outweigh the significant in-

crease in implementation complexity. For this reason the simplest algorithm, spatial zoning,

has been chosen for this project.

Spatial zoning separates the simulation domain into control volumes. Particles are then

sorted into the control volumes. Particles in neighbouring, or the same, control volumes

are then resolved fully. This arrangement is shown in Figure 2.3. It is most efficient to

have the control volumes as small as possible because this reduces the number of particles

in neighbouring control volumes. Control volumes must be at least as large as the largest

particle in the simulation to ensure that neighbouring control volumes contain all possible

collisions. For monodisperse particle populations this means that the control volumes should

18



CHAPTER 2. THE DISCRETE ELEMENT METHOD Elijah Andrews

be the same size as the particles. For polydisperse particle populations this means that the

control volumes should be the size of the largest particle in the population. As mentioned

in Tuley[10] this can decrease efficiency for particle populations with a large range of sizes.

Sections 4.2.2 and 5.3.2 provide further detail as to how this is implemented computationally

in Python and with OpenCL.

Initial conditions

Assign particles to control volumes

Create collisions

Resolve collision forces

Iterate particles

Broad phase collision detection

Collision resolution

Particle iteration

Figure 2.2: The basic simulation loop and simulation phases.

× ×

×

×

p1 p2

p3

p4

Figure 2.3: A diagram of particles sorted into control volumes. p1, p2, and p3 are all

in neighbouring control volumes and there could be collisions between all three. Collision

resolution will reveal that there are no collisions with p2. p4 has no particles in neighbouring

control volumes so no collisions are resolved for it.
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Chapter 3

Numerical Methods

3.1 Numerical Integration Schemes

The DEM model used in this project has stiff governing equations. This means that the

simulation may become unstable if the timestep is not sufficiently small. Thus, the choice

of integration scheme is important. There are three main schemes that will be considered

for this project: the Euler method (or forward Euler method), the backward Euler method

(or implicit Euler method), and the trapezoidal rule.

The forward Euler method is an explicit integration method, using the current value to

estimate the next value. It has first order accuracy and requires only the data from the

current iteration.

The backward Euler method is an implicit integration method, assuming the next value

and solving the equation for it. It also has first order accuracy and requires only the data

from the current iteration.

The trapezoidal rule is an implicit integration method that uses the average of the cur-

rent and next values. It has second order accuracy.

For the implicit methods either an analytic solution to the implicit equations or a numerical

solution can be used. For simplicity, only the functions that can form analytic solutions

from the implicit equations will use the implicit methods.

3.1.1 Velocity

For Equation 2.11 the forward Euler method for integrating acceleration to get velocity at

iteration n+ 1 is shown in Equation 3.1. In this case the force, F , is a function of un.

un+1 = un +
F (un)

m
∆t (3.1)

For the same equation, the backward Euler method is shown in Equation 3.2. In this case
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the force, F , is a function of un+1.

un+1 = un +
F (un+1)

m
∆t (3.2)

The total force is a combination of forces (see Equation 2.12). Drag and gravity forces are

only calculated once per iteration so they can be calculated at the same time as the velocity.

However, collision forces are calculated multiple times per iteration to get contributions

from all collisions and so cannot be easily calculated at the same time as the velocity. For

this reason, the normal force, tangential force, and cohesion force are treated as fixed at the

time of velocity calculation. Gravity is also fixed so Equation 2.12 can be represented as in

Equations 3.3 and 3.5. F (u) can then be used in Equation 3.1 or 3.2.

F (u) = Fn + Ft + Fc + Fg + Fd(u) (3.3)

Ffixed = Fn + Ft + Fc + Fg (3.4)

F (u) = Ffixed + Fd(u) (3.5)

For Equation 3.1 it is trivial to calculate the next velocity as the RHS is only dependant on

un which is known. This results in Equation 3.6.

un+1 = un +
Ffixed + Fd(un)

m
∆t (3.6)

Equation 3.2 must be rearranged to get un+1 as a function of un only. This results in

Equation 3.7.

F (un+1) = Ffixed +
m

τp
(uf − un+1)

un+1 = un +

Ffixed +
m

τp
(uf − un+1)

m
∆t

= un +
Ffixed
m

∆t+
∆t

τ
(uf − un+1)

un+1(1 +
∆t

τ
) = un +

Ffixed
m

∆t+
∆t

τ
(uf )

un+1 =
τun + Ffixedτ∆t/m+ uf∆t

τ + ∆t
(3.7)

Equation 3.7 can be rearranged to be in the same form as Equation 3.6 as shown in Equation

3.8.

un+1 = un +
(uf − un + τFfixed/m

τ + ∆t

)
∆t (3.8)

A comparison of the accuracy of these integration schemes is in Section 3.1.3.

3.1.2 Position

Equation 2.10 is a very simple differential equation that can be solved by integrating. Since

the velocity does not directly depend on the position, and the velocity for the next iteration

is calculated before the position, it is trivial to use the trapezoidal rule to calculate position.

It has the advantage of accuracy without the disadvantage of increased complexity. The

position can thus be calculated with Equation 3.9.

xn+1 = xn +
un + un+1

2
∆t (3.9)
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3.1.3 Comparison of Integration Schemes

This analysis was performed using the Python implementation discussed in Chapter 4.

Figure 3.1 shows the speed of a particle in a fluid starting from rest and accelerating to

the fluid velocity. It shows that the explicit velocity equation (Equation 3.6) over-estimates

the speed and the implicit velocity equation (Equation 3.7) under-estimates the speed. The

error in the implicit result is less than the error in the explicit result.

Figure 3.2 shows the average percentage difference between each numerical method and

the analytic solution for varying timestep. This shows that the explicit method is exactly

first order accurate whereas the implicit result is slightly higher than first order accurate.

This means that it is better to use the implicit method than the explicit method.

Figure 3.1: Particle speed against time with different integration schemes.
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Figure 3.2: Average percentage difference between the numerical method and analytic

solution against varying timestep.

3.2 Friction Model

The static friction models outlined in Section 2.2.2 both rely on the tangential displacement

during an interaction, ζ. This is a difficult property to determine as it requires a collision

history to be maintained for it to be correctly measured. Maintaining a collision history adds

significant complexity to a simulation as it requires data to be stored between timesteps.

As this implementation of the DEM ignores rotation, the accuracy of the simulation when

considering sliding is limited. Increasing the simulation complexity in order to slightly

improve the friction model is not necessary so various alternatives have been considered.

The graphs presented below use the friction verification case from Section 3.3.3.

3.2.1 Dynamic Friction Only

Removing the static friction part of the model entirely would simplify the calculation and

make the code slightly faster. However, the dynamic friction model is prone to instability,

especially at high timesteps. The particle oscillates around a point because the model does

not handle overshoot well. This behaviour is shown in Figure 3.3.
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Figure 3.3: Position and velocity against time for a dynamic only friction model. Note

high levels of instability, especially in the velocity.

3.2.2 Static Friction Without Damping

Two methods were considered for calculating the tangential displacement, ζ. The first was

to simply estimate how far the particle moved in a timestep by multiplying the tangen-

tial velocity by the timestep. This method does not work because as the timestep decreases

the static friction decreases and the error increases. This effect is demonstrated in Figure 3.4.

The alternative method was to estimate ζ by multiplying the tangential velocity by the

collision duration (see Section 2.4.2). The results for this model are shown in Figure 3.5.

This provides far more accurate results and solves the instability problem from the dynamic

model and doesn’t significantly overshoot.
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Figure 3.4: Position and velocity against time for a timestep based static model. Note the

increasing error with decreasing timestep.
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Figure 3.5: Position and velocity against time for a collision duration based static model.
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3.2.3 Static Friction With Damping

The static friction model with damping from Equation 2.3 was investigated but did not

provide any significant improvement in accuracy or stability over the static model without

damping.

3.3 Verification

A series of verification test cases have been developed in order to assess the accuracy of the

numerical model in the program implementations. The definitions and equations for these

cases are in this section and the implementation comparisons are in Sections 4.3 and 5.4.

3.3.1 Drag

The drag verification case is a particle in a fluid. The fluid has a constant velocity in the x

direction denoted by uf . There is no gravity and no other particles are present. The particle

accelerates from rest to the speed of the fluid.

The position and velocity of the particle are determined by Equations 3.10 and 3.11, respec-

tively. These equations are derived in Section A.5.

x = ufτ(e−t/τ − 1) + uf t (3.10)

ẋ = uf (1− e−t/τ ) (3.11)

(3.12)

3.3.2 Normal Collision

The normal collision verification case is the most simple normal collision. The first particle

(p1) has infinite density and so is fixed in space. The second particle (p2) has an initial

velocity, u0, towards the first particle and starts at x = db so that the body surfaces are

just touching. There is no drag, no gravity, and no cohesion. This arrangement is depicted

in Figure 3.6.

The position and velocity of the second particle are determined by Equations 3.13 and 3.14,

respectively. These equations are derived in Section A.1.

x = eat
u0
b
sin(bt) + db (3.13)

ẋ = u0e
at(
a

b
sin(bt) + cos(bt)) (3.14)

Where: a =
−η
2m

, b =

√
4mke − η2

2m
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p1 p2

+ve+ +

0 x

u0

Figure 3.6: The initial setup of the normal collision verification case.

3.3.3 Friction Sliding

The friction sliding test case is a particle sliding along a wall. The particle is started at the

theoretical height at which the normal force balances the gravitational force. This ensures

that the friction force is as stable as possible and not affected by any bouncing. The particle

has an initial velocity, u0, in the x direction. This arrangement is depicted in Figure 3.7.

The analytic solution to this case uses dynamic friction only but is sufficient to assess the

accuracy of the model. The position and velocity of the particle are determined by Equations

3.16 and 3.15, respectively.

ẋ = −µgt+ u0 (3.15)

x =
−µg

2
t2 + u0t+ x0 (3.16)

wall

u0

+ve+

0

p1

Figure 3.7: The initial setup of the friction sliding verification case.

3.3.4 Normal Collision with Cohesion

The cohesion collision verification case is very similar to the normal collision verification

case (Section 3.3.2). The first particle (p1) has infinite density and so is fixed in space.

The second particle (p2) has an initial velocity, u0, towards the first particle and starts at

x = de so that the effect surfaces are just touching. There is no drag and no gravity. This

arrangement is depicted in Figure 3.8.

The position and velocity of the second particle are determined by the set of equations

28



CHAPTER 3. NUMERICAL METHODS Elijah Andrews

below. These equations are derived in Section A.2.

When de > x > db, u < 0:

x = u0

√
m

kc
sinh

(
t

√
kc
m

)
+ de (3.17)

ẋ = u0cosh
(
t

√
kc
m

)
(3.18)

When x < db:

x = eat(
ui − ac

b
sin(bt) + ccos(bt)) +

kedb − kcde
ke − kc

(3.19)

ẋ = eat
((ui − ac

b
a− cb

)
sin(bt) + uicos(bt)

)
(3.20)

When de > x > db, u > 0:

x = (db − de)cosh
(√kc

m
t
)

+ ur

√
m

kc
sinh

(√kc
m
t
)

+ de (3.21)

ẋ =

√
kc
m

(db − de)sinh
(√kc

m
t
)

+ urcosh
(√kc

m
t
)

+ de (3.22)

Where: a =
−η
2m

, b =

√
4mke − η2

2m
, c =

kc(de − db)
ke − kc

p1 p2

+ve+ +

0 x

u0

Figure 3.8: The initial setup of the cohesion collision verification case.
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Python Implementation

4.1 Overview

An initial implementation of the DEM has been developed in Python. The objective of this

implementation is to gain an understanding of the DEM and any inherent computational

difficulties. Python has been chosen as a testing environment for its simplicity and ease of

development. The code for the Python implementation can be found in the DEMApples

GitHub repository[12].

4.2 Program Structure

4.2.1 Element Types

For the Python implementation two element types have been chosen, a spherical particle and

an axis-aligned wall. Python allows for object oriented programming which makes element

tracking easier.

Particle

The basic particle element is a spherical particle with pre-determined properties. All of

these properties can be set upon instantiation of each particle object and so can be easily

modified for different simulations.

There are two objects for particles, the main object, ’Particle’, tracks a full particle state

history which is very memory intensive and unnecessary for most applications. The second

object, ’LowMemParticle’, inherits from ’Particle’ and doesn’t keep a full history.

Axis-Aligned Simple Wall

The wall element is a simple axis-aligned wall. This object is defined by two points, min-

imum and maximum, that must lie in the same plane. From them a rectangle is formed.

A normal is calculated for the wall and stored in the object to save time in collision calcu-

lations. The wall is treated as fixed, eliminating the need for complex material properties

or calculation of motion. An axis-aligned wall has been chosen because it eliminates a lot

of the complex calculations required when calculating arbitrary planar geometry. Non-axis-
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aligned geometry, such as a slope, can still be used in simulations by having gravity act

along different vectors. This has been used in ‘gravity shift closed box.py’ simulation[12].

4.2.2 Collisions

Collision Detection

Broad phase collision detection uses the simple spatial zoning technique from Section 2.6.

This approach has been chosen because it is quick and simple to implement. Other options

(such as triangulation[13]) were considered for this implementation but the benefits of using

them were far outweighed by their complexity. Since the initial Python implementation will

not be fast anyway it was not deemed necessary to implement optimised algorithms at this

stage.

The domain is represented by a three-dimensional array where each entry is a control vol-

ume. The control volume has a list of particles in its bounds. The global list of particles is

iterated over and each particle assigns itself to the correct control volume. This results in a

three-dimensional array where each control volume has all of the particles within its bounds

as an array. Collision objects are then created for each pair of particles in the same, or

neighbouring, control volumes. This approach reduces the problem from O(N2) to almost

O(N) as shown in Figure 4.1.

Figure 4.1: This graph shows that the simple spatial zoning technique reduces the problem

from O(N2) down to almost O(N).
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Collision Resolution

After an array of collisions has been generated they are iterated over and each collision

is resolved. First, the distance between particles is calculated to determine if they are in

contact. Often this reveals that they are not in contact and the calculation ends there. If

particles are in contact then collision forces are determined.

In the Python implementation only the simple normal and tangential contact forces are

calculated. These are enough to run sufficient initial test cases.

4.2.3 Calculating Forces

The mathematics for how the forces are calculated can be found in Section 3. This section

discusses some of the implementation details.

Drag

To determine drag a flow velocity must be calculated. In this implementation it is calculated

using a function that is passed into the Particle object upon instantiation. This allows a

variety of flow field functions to be used without modifying the Particle object code. The

default for this function is a perfectly stationary flow.

Gravity

A gravity function can also be passed into the Particle object upon instantiation. Although

this defaults to a simple -9.81ms−2 in the z direction, it can be chosen to simulate a rotating

frame of reference or other complex configurations. A rotating frame of reference has been

implemented in the ‘gravity shift closed box’ example simulation[12].

DEM Forces

The DEM forces that are calculated in collisions are stored in an array within the Particle

object. When the particle is iterated the array is summed and used in the iteration cal-

culation. After this calculation the array is cleared so that forces do not get incorrectly

added multiple times. This configuration makes it simple to add and remove forces to the

simulation whenever necessary and could also be used in general to add any force to the

particle.

4.3 Verification

This section contains the results of the verification cases from Section 3.3 for the Python

implementation. The graphs in this section compare the results of simulations against the

analytic solutions. Overall, the results show that the simulation is suitably accurate and as

timestep decreases the simulation accuracy increases, as expected.
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4.3.1 Drag

This is the drag verification case from Section 3.3.1. The properties used are in Table 4.1

and the results are shown in Figure 4.2. The results show that the simulation results closely

match the analytic solution and that the error decreases as the timestep decreases.

Property Value

Particle Density ρ 10 kg/m3

Particle Diameter db 0.1 m

Fluid Viscosity µ 0.00193 Ns/m2

x Fluid Velocity uf 1 m/s

Table 4.1: Properties used in the Python drag verification case.

Figure 4.2: Normalized position and speed against time of a particle in a moving fluid.

In this graph time is normalized with the particle relaxation time τ , position is normalized

with particle diameter dp, and velocity is normalized with fluid velocity uf .
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4.3.2 Normal Collision

This is the normal collision verification case from Section 3.3.2. The properties used are

in Table 4.2 and the results are shown in Figure 4.3. The results show that the simulation

results closely match the analytic solution and that the error decreases as the timestep

decreases.

Property Value

Initial x Velocity u0 -2 m/s

Stiffness ke 1e5 N/m

Coefficient of Restitution ε 0.8

Particle Density ρ 10 kg/m3

Particle Diameter db 0.1 m

Table 4.2: Properties used in the Python normal collision verification case.

Figure 4.3: Normalized position and speed against time during a normal collision. In this

graph time is normalized with the collision duration tcollision, position is normalized with

particle diameter dp, and velocity is normalized with initial velocity u0.
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4.3.3 Friction Sliding

This is the normal collision verification case from Section 3.3.3. The properties used are

in Table 4.3 and the results are shown in Figure 4.4. The results show that the simulation

results closely match the analytic solution. The error does decrease as the timestep decreases

but there is no clear evidence that it does so in a predictable way.

Property Value

Initial x Velocity u0 1 m/s

Initial x Position x0 0 m

Gravitational Acceleration g 9.81 m/s2

Stiffness ke 1e5 N/m

Coefficient of Restitution ε 0.8

Particle Density ρ 10 kg/m3

Particle Diameter db 0.1 m

Coefficient of Friction µ 0.6

Friction Stiffness kf 1e8 N/m

Table 4.3: Properties used in the Python friction sliding verification case.
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Figure 4.4: Normalized position and speed against time during a normal collision. In this

graph time is normalized with the collision duration tcollision, position is normalized with

particle diameter dp, and velocity is normalized with initial velocity u0.
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OpenCL Implementation

5.1 OpenCL and Graphics Processing Units

The main computational device in a computer is the Central Processing Unit (CPU). The

CPU takes a series of instructions and calculates pretty much anything that a computer re-

quires. For most applications this is ideal as they require a sequence of different instructions

to be executed to achieve their goal. However, for some applications this is inefficient. The

most common occurrence of this is in graphics. Graphics require the same calculations to be

performed a very large number of times to render images. To run this on a CPU would take a

long time because it would all run in sequence. To speed up this process Graphics Processing

Units (GPUs) were developed. GPUs run the same operation many times in parallel rather

than different operations in series. Individual GPU computation cores are slower than CPU

cores but for graphics this is fine as the gains from running everything in parallel are massive.

Originally this was applied to graphics but more recently has been used to do scientific calcu-

lations where the same operation is repeated across a lot of data. In order to facilitate this,

languages have been developed to allow a developer to easily run calculations on GPUs. The

two most common such languages are CUDA and OpenCL. CUDA is NVIDIA’s language

that is specifically designed for NVIDIA GPUs. OpenCL is an open standard maintained

by the Khronos group, a consortium of companies dedicated to open standard graphics and

parallel computing interfaces. OpenCL allows a developer to write programs for a variety

of devices (e.g. GPUs, CPUs, and FPGAs) without having to modify the code. This makes

OpenCL code highly portable and reusable. For this reason OpenCL has been chosen for

use in this project.

There are two main parts of an OpenCL program, the host code and the device code. The

host is whatever computer system is being used, usually a CPU, some memory, a storage

device, and other standard elements. The device is whatever processing unit is being used

to run the main calculations. In this project the device is the GPU. The host runs setup,

memory handling, and other miscellaneous processing tasks. The device is then passed

kernels to run on a group of data.
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5.2 Overview

The main DEM implementation used in this project uses OpenCL to run on a GPU. The

host code is written in C to simplify writing code for both the host and the device. More

features are available in C++, however only OpenCL 2.1 has C++ kernel support and

NVIDIA only supports up to OpenCL 1.2. Since one goal of using OpenCL is to allow the

code to be used on multiple platforms, it does not make sense to use OpenCL 2.1.

A lot of the OpenCL utility functions used in this implementation are based on code from

the previous project[1]. These functions allow for easy implementation of code without hav-

ing to repeat long OpenCL function calls.

The code for the OpenCL implementation can be found in the DEMOranges GitHub

repository[14]. Technical documentation can be found in the DEMOranges GitHub Wiki[15].

5.3 Program Structure

5.3.1 Data Structures

Unlike Python, C does not support objects. This means that more care must be taken in

data storage. The most sensible way to store data is in structures. In this implementation

structures are used as the primary storage method. There are three types of structures used:

particle, wall, collision.

Particle

The particle structure contains particle properties (density, diameter, position, velocity etc.)

as well as the fluid viscosity to make it easier to access in calculations.

The structure is aligned to the nearest 128 bytes of memory to make access to it faster.

This does waste a little under half of this memory but for 107 particles the particle array

requires a total of 1.2GB which is within workable limits. Benchmarks could be performed to

determine whether this trade-off is necessary, but the downside is small and so has not been

considered significant. Another benefit of this alignment is that additional particle data can

be stored within the particle array without costing any more memory than is already used.

Wall

The ‘aa wall’ structure simply contains the minimum, maximum, and normal vector for an

axis aligned wall. This structure is not aligned to the nearest 128 bytes of memory.

Collision

There are two collision structures: ‘pp collision’ for particle-particle collisions and ‘pw collision’

for particle-wall collisions. The structures only contain the two relevant IDs. The collision

structures are not aligned to the nearest 128 bytes of memory as this would waste almost

all of the memory and there can be many collisions.
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The only notable difference between the particle-particle collision structure and the particle-

wall collision structure is that the particle-particle collision structure contains data that

tracks whether a collision is across a periodic boundary.

Buffers

To access the data from the device it must be passed into a buffer. None of the structure

data is passed into the buffer so the device must have a copy of the definition of the struc-

ture. This is problematic as the host and device have different compilers. To work around

this problem the host and device structures are written with members in descending order

of size. This encourages the compiler to order them correctly in memory.

In addition, when using the MSVC compiler, padding must be added to ensure correct

alignment. This padding is not required when using gcc compilers. The alignment attribute

specifier is also not the same between different compilers so “if defined” statements are

implemented for both MSVC and gcc compilers to allow the code to be compiled on either

without modification.

5.3.2 Kernels

The main calculations for this implementation are performed on the device. This means

that the program must be separated into kernels to be passed over sets of data. There are

three main sets of kernels: collision detection, collision resolution, and particle iteration.

Collision Detection

To improve efficiency, in both speed and resource usage, performing naive collision detection

is not viable for large numbers of particles. To improve on this the spatial zoning technique

is used, similar to the initial Python implementation. However, C does not make arrays of

varying sizes easy or efficient so the data structures used and the algorithm implementation

must be significantly different.

The basic problem is how to store control volumes as lists of references to particles. In

Python this was easy, a simple 3D array of control volumes with lists of particle objects

inside was sufficient. Various approaches to solving this problem were considered. One

approach was to encode particle IDs (equal to the index of a particle in the particles array)

with a hashing function into a single number that could be turned back into particle IDs on

the device. However, this approach was infeasible because the numbers would get so large

that they could not be stored accurately or efficiently.

The approach used is to have multiple passes of assignment of particles to control vol-

umes. The first pass simply counts how many particles are in each control volume so that

appropriately sized arrays can be created before the data must be added. This is stored in

a one dimensional array of control volumes represented by integers of how many particles

each contains. From this array another array is created. This array is of all the particle IDs
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but ordered by control volume. The control volumes are of lengths defined by the count

array and start at indexes stored in a third array. If a control volume has no particles,

the start index of the array is set to -1. For the unsigned long data type this overflows to

the maximum value (approximately 4.3 billion) which will never be used to index particles.

This arrangement of arrays is shown in Figure 5.1.

This approach is somewhat similar to how memory is handled on a computer, but using

indexes instead of pointers. For an entirely host-side method an array of pointers to arrays

of particles could be used, but this would not be sensible when dealing with device memory

as each array would need to be moved to the device before use. Having three arrays that

hold all the necessary properties simplifies the memory buffer process significantly. The

maths required for turning positions and control volume coordinates into indexes in these

arrays are contained in cvUtils.c and kernelUtils.cl for host and device, respectively.

4 2 0 0 3 5 3 2 1

0 4 -1 -1 6 9 14 17 19

Particle Count Array

CV Start Index Array

Sorted Particle Array

0 1 2 3 4 5 6 7 8CV Index

Figure 5.1: Diagram showing the structure and relationship between arrays representing

Control Volumes.

One weakness of this approach is that the CV start index array is generated sequentially.

This could be done in parallel but would be more complicated and would still need to count

in sequence. Although interesting, this not a significant performance problem and so has

been left as it is.

Collision Resolution

The collision resolution kernel is actually separated into multiple kernels for different types

of collision (particle-particle and particle-wall) however the behaviour of these kernels is

almost identical. For this discussion we will use the particle-particle kernel as an example.

The kernel takes a pointer to an array of collision structures and a pointer to the array of

particles. The DEM collision force calculations are run for each collision and the forces are

added to the DEM forces vector in the relevant particle structures. This approach has been

chosen because it is easier to sum the forces as they are calculated rather than attempt

to predict the length of the necessary force array to store each force separately as in the

Python implementation.
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This approach causes a serious problem as it is possible that multiple collision kernels will

need to write data to the same particle at the same time. The solution to this is to use

the atomic operations available in OpenCL. Unfortunately, OpenCL only natively supports

full atomic operations for int and unsigned int data types whereas the forces are stored in a

float vector. OpenCL does support an exchange atomic operator for single precision floats,

but this is not the best approach for doing atomic arithmetic for floats.

An approach for doing atomic addition (as is necessary in this case) is recommended in

an online article[16]. This approach uses the comparison exchange atomic operator by cre-

ating a union of the floats with unsigned ints. This works well because the bits being

exchanged are the same for the float and unsigned int and actual atomic arithmetic is not

necessary so the difference between the data types does not matter. Thus the new value is

calculated and if the value used to calculate it has changed in that time the calculation is

repeated with the updated value.

Particle Iteration

Particle iteration is performed almost identically to the Python implementation. The main

difference, as discussed in Section 5.3.2, is that the OpenCL implementation performs the

summation of DEM forces as they are calculated in collisions whereas the Python imple-

mentation performs the summation when iterating the particle.

5.3.3 Unit Tests

Due to the large size of the project and algorithmic complexity, it is important to test each

unit of code individually rather than trying to trace bugs through the whole code-base. In

addition, this project is intended to be run on heterogeneous devices and so differences in

runtime environment could cause problems. For these reasons a unit testing approach has

been chosen so that tests can be quickly re-run to check code unit functionality without

assuming identical behaviour between systems.

Some functions are not included in the unit testing system due to their simplicity and

the relatively long time it would take to program unit tests for all of them. For example,

checking that a function multiplies numbers correctly does not need to be tested every time

whereas checking that structures are correctly aligned in memory is important to test every

time.

Testing Framework

Often a framework is used for unit testing, however there is not a quick, easy framework

available for C with OpenCL so a simple system has been set up to make running tests easy.

Each tested feature has a directory within the ’tests’ directory with its header and C code

files. A feature may have multiple functions, each with its own testing function. Each

testing function takes a boolean parameter, ’verbose’, that determines whether it prints

intermediate results and debugging outputs. The functions return a boolean that indicates
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whether the test passed or not. In some cases, if a function fails, it may not be obvious why

and so debugging outputs will be printed. For example, test assign particle count could

have the wrong number of control volumes or incorrectly assigned particles so both of these

outcomes has its own printed debugging output.

To make it easy to run these tests repeatedly ’run tests.c’ has been created to run all

of the tests and indicate which, if any, fails. These tests are also executed at simulation

runtime to ensure that all tests are passed before starting a simulation run.

5.4 Verification

This section contains the results of the verification cases from Section 3.3 for the OpenCL

implementation. The graphs in this section compare the results of simulations against the

analytic solutions. Overall, the results show that the simulation is suitably accurate and as

timestep decreases the simulation accuracy increases, as expected.

5.4.1 Drag

This is the drag verification case from Section 3.3.1. The properties used are in Table 5.1

and the results are shown in Figure 5.2. The results show that the simulation results closely

match the analytic solution and that the error decreases as the timestep decreases.

Property Value

Particle Density ρ 10 kg/m3

Particle Diameter db 0.1 m

Fluid Viscosity µ 0.00193 Ns/m2

x Fluid Velocity uf 1 m/s

Table 5.1: Properties used in the OpenCL drag verification case.
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Figure 5.2: Normalized position and speed against time of a particle in a moving fluid.

In this graph time is normalized with the particle relaxation time τ , position is normalized

with particle diameter dp, and velocity is normalized with fluid velocity uf .

5.4.2 Normal Collision

This is the normal collision verification case from Section 3.3.2. The properties used are in

Table 5.2 and the results are shown in 5.3. The results show that the simulation results

closely match the analytic solution and that the error decreases as the timestep decreases.
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Property Value

Initial x Velocity u0 -2 m/s

Stiffness ke 1e5 N/m

Coefficient of Restitution ε 0.8

Particle Density ρ 10 kg/m3

Particle Diameter db 0.1 m

Table 5.2: Properties used in the OpenCL normal collision verification case.

Figure 5.3: Normalized position and speed against time during a normal collision. In this

graph time is normalized with the collision duration tcollision, position is normalized with

particle diameter dp, and velocity is normalized with initial velocity u0.
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5.4.3 Friction Sliding

This is the normal collision verification case from Section 3.3.3. The properties used are

in Table 5.3 and the results are shown in Figure 5.4. The results show that the simulation

results closely match the analytic solution. The error generally decreases as the timestep

decreases but it is unpredictable. The results show that the position error is actually higher

for a timestep of tcollision/64 than for a timestep of tcollision/32. However, the results are

accurate enough for the purpose of this simulation.

Property Value

Initial x Velocity u0 1 m/s

Initial x Position x0 0 m

Gravitational Acceleration g 9.81 m/s2

Stiffness ke 1e5 N/m

Coefficient of Restitution ε 0.8

Particle Density ρ 10 kg/m3

Particle Diameter db 0.1 m

Coefficient of Friction µ 0.6

Friction Stiffness kf 1e5 N/m

Table 5.3: Properties used in the OpenCL friction sliding verification case.

45



CHAPTER 5. OPENCL IMPLEMENTATION Elijah Andrews

Figure 5.4: Normalized position and speed against time during a friction event. In this

graph time is normalized with the collision duration tcollision, position is normalized with

particle diameter dp, and velocity is normalized with initial velocity u0.
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5.4.4 Normal Collision with Cohesion

This is the normal collision with cohesion verification case from Section 3.3.4. The properties

used are in Table 5.4 and the results are shown in 5.3. The results show that the simulation

results closely match the analytic solution and that the error decreases as the timestep

decreases. Notably, the error causes overshoot on the position so particles are less likely to

stick in a simulation than they would in the analytic solution.

Property Value

Initial x Velocity u0 -2 m/s

Stiffness ke 1e5 N/m

Cohesion Stiffness kc 100 N/m

Coefficient of Restitution ε 0.8

Particle Density ρ 10 kg/m3

Particle Diameter db 0.1 m

Particle Effect Diameter de 0.15 m

Table 5.4: Properties used in the OpenCL normal collision with cohesion verification case.
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Figure 5.5: Normalized position and speed against time during a normal collision with

cohesion. In this graph time is normalized with the collision duration tcollision, position is

normalized with particle diameter dp, and velocity is normalized with initial velocity u0.

5.5 Optimization and Performance

5.5.1 Optimizations

Only preliminary optimization has been performed for this implementation as it is not a focus

of the project. The optimization efforts have focussed on reducing unnecessary calculations,

reducing the number of atomic operations, and avoiding memory transfers between host and

device where possible.
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5.5.2 Performance

Govender et al. have also developed GPU based DEM implementations and have provided

performance measures in one of their papers[17]. The key performance measure they use

is the Cundall Number. The Cundall Number is defined in Equation 5.1 where N is the

number of particles and FPS is the number of simulation frames that can be calculated

in a second. The simulations performed in Govender et al.[17] were run on an NVIDIA

Quadro K6000 GPU with an Intel i7 3.5 GHZ Extreme Edition CPU. The benchmarks for

this project have been run on an NVIDIA Quadro P5000 GPU with an Intel Xeon 3.5 GHz

CPU.

To calculate the C Number of this project a 10 million particle simulation has been run

with a timestep of 0.0005 seconds and a simulation length of 5 seconds. This simulation

ran in 145.22 minutes yielding an FPS of 1.148. This gives an overall C Number of 11.5×106.

Table 5.5 compares this project with Govender et al.[17]. It shows that Govender et al.

have achieved significantly better performance. In addition, Govender et al. have improved

their performance in a later paper[3]. Although greater performance has been achieved in

other codes, this project has achieved satisfactory performance. With further optimization,

and implementation of more complex algorithms, it is conceivable that similar performance

could be achieved.

C = N × FPS (5.1)

Author Shape N Particles C Number

This project Sphere 10× 106 11.5× 106

Govender et al.[17] Sphere 50× 106 55× 106

BLAZE-DEM[3] Sphere 32× 106 100× 106

Table 5.5: Performance comparison with another GPU DEM code.

5.5.3 Run time linearity

One key objective of particle simulations with collisions is to reduce the simulation run time

from O(N2) to O(N). To assess this performance, simulations with increasing numbers of

particles have been run. Notably, these simulations have logging to file disabled in order

to assess the algorithm performance only. Figure 5.6 shows the results of these runs. The

results show that the simulation is very close to being linear. At high numbers of particles

the non-linearity is more evident, but still remains close to the extrapolated line.
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Figure 5.6: Run time against number of particles for the OpenCL simulation compared

to a linear extrapolation through N = 1e4 and N = 1e6.
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Application

An agglomerate is a group of particles held together by cohesive forces. Agglomerates can be

formed from electrostatically charged dust, magnetic particles, or a variety of other forces.

When designing anything that handles cohesive particles it is important to understand

agglomeration behaviour. The simulation tool developed in this project can be applied to

studying this behaviour. The two properties that are examined in this chapter are the Stokes

Number (see Section 6.1.2) and the Stickiness Number (see Section 6.1.3).

6.1 Simulation Setup

The simulation uses a Taylor-Green Vortex fluid flow field (see Section 6.1.1). It is a rela-

tively simple flow field that can be easily set to fit a cubic domain boundary. It also works

well for bringing particles together so that collisions are more frequent than a stationary

fluid. It is a constant source of additional energy so that the particles do not simply lose

energy and eventually stay at rest.

The simulation uses periodic boundary conditions such that if a particle were to leave the

domain it re-enters the domain on the opposite side. This provides a decent approximation

of a larger domain with more particles by assuming that the simulation domain is represen-

tative of the larger domain as a whole.

Section 6.1.1 describes in more detail the mathematical setup of a Taylor-Green Vortex

flow. Section 6.1.2 defines the Stokes Number and how it is varied in the simulation. Sec-

tion 6.1.3 defines the Stickiness Number and how it is varied in the simulation. Section 6.1.4

defines all of the constant properties used in the simulation. Section 6.1.5 defines the initial

conditions of the simulation.

6.1.1 Taylor-Green Vortex Flow

Taylor-Green Vortex flow is a specific solution to the incompressible Navier-Stokes equations.

Chow[1] simplifies these equations for cubic vortices with a control variable A and vortex

frequency a as shown in Equations 6.1, 6.2, and 6.3. This formulation has vortex boundaries
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at −π and π. The flow is plotted in Figure 6.1.
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))
sin
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Figure 6.1: A z-y view of a Taylor-Green Vortex flow field. (Figure 5a from Chow[1]).

6.1.2 Stokes Number

The Stokes Number, Stk, describes how a particle moves through a fluid. A high Stokes

Number indicates an inertial regime where a particle is relatively unaffected by the fluid.

A low Stokes Number indicates a viscous flow regime where the particle closely follows the

fluid. A Stokes Number around 1 is in a transitional regime between viscous and inertial.

This is shown in Figure 6.2. The Stokes Number for a particle in Stokes flow is defined as

in Equation 6.4[1].

For the Taylor-Green Vortex flow used in these simulations l0 is the diameter of one of the

vortices and u0 is the average fluid flow speed uf,avg. Chow[1] calculated that the average

flow speed for Taylor-Green Vortex flow is uf,avg = 0.7839A.

Stk =
ρpd

2
pu0

18µl0
(6.4)
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Viscous, Stks << 1 Transitional, Stks ≈ 1 Inertial, Stks >> 1

Fluid motion Particle motion

Figure 6.2: Stokes Number regimes.

6.1.3 Stickiness Number

The Stickiness Number, Sy, describes how likely particles are to stick to each other through

collisions. Le is the effect length and is usually de − db, where de is the effect diameter and

db is the body diameter. kc is the cohesion stiffness from Equation 2.6. ε is the coefficient

of restitution, u is the average particle speed, and m is the average particle mass.

Sy =
Le
√
kc

ε
√
L2
ekc + u2m

(6.5)

This number is derived from the analytic solution for a normal cohesive collision, the full

derivation can be found in Section A.3. When the effect length is de−db and u is the initial

collision speed, the Stickiness Number determines whether the particles will stick after the

collision.

Sy < 1 Does not stick

Sy > 1 Sticks

For the general case, lower Stickiness Numbers cause the particles to be less likely to stay

together and higher Stickiness Numbers cause the particles to be more likely to stay together.

Stickiness Numbers in the range 0 < Sy < 1.5 are common, higher Stickiness Numbers are

uncommon with normal parameters.

6.1.4 Simulation Properties

The constant properties used in the simulations are in Table 6.1. The properties used to

achieve chosen Stickiness Numbers and Stokes Numbers are in Tables 6.2 and 6.3, respec-

tively. Note that, due to the long simulation durations, the timestep is only tcollision/8.

Although this is not of the highest accuracy, it does allow for longer simulations and for

more data points to be collected. Absolute accuracy is not as important since the focus of

these simulations is to observe how agglomerates vary with different properties. A smaller
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timestep would be recommended if these simulations were required to predict specific out-

comes of real scenarios.

Property Value

Gravitational Acceleration g 0 m/s2

Stiffness ke 1e5 N/m

Cohesion Stiffness kc 100 N/m

Particle Density ρ 2000 kg/m3

Particle Diameter db 0.05 m

Effect Diameter de 0.075 m

Coefficient of Friction µ 0.1

Friction Stiffness kf 1e5 N/m

Domain Length 2π m

Number of Particles N 10,000

Timestep ∆t tcollision/8 = 0.000449 s

Simulation Length 600 s

Flow Magnitude A 5

Vortex Frequency a 3

Table 6.1: Constant properties used in the simulations.

Stickiness Number

Property 0.1 0.6 1.0 1.5

Coefficient of Restitution ε 0.5 0.2 0.174 0.15

Cohesion Stiffness kc 8.06 47.01 100.0 117.24

Table 6.2: Properties used to achieve chosen Stickiness Numbers.

Stokes Number

Property 0.1 1.0 5.0 10.0

Fluid Viscosity µ 10.40 1.040 0.2080 0.1040

Table 6.3: Properties used to achieve chosen Stokes Numbers.

6.1.5 Initial Conditions

The particles are initially arranged in a cubic formation in the centre of the domain as shown

in Figure 6.3. The particles are at intervals of approximately 3db. Each particle has a small

random offset to avoid the results being affected by an unrealistically ordered system (this

has been encountered in other simulations). The particles are given initial velocities with

random directions and random speeds. The speeds are distributed with a mean of 1m/s

and standard deviation of 0.1m/s. The directions are evenly distributed.
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Figure 6.3: A rendered image of the initial positions of the particles. The red spheres are

the particles and the black lines are the domain boundary.

6.2 Results and Analysis

6.2.1 Definitions

The two main statistics that are measured from the results of these simulations are the

mean agglomerate size and the mean void fraction.

Agglomerate Size

The agglomerate size is the number of particles in an agglomerate. Particles are considered

to be in an agglomerate when they are in contact with other particles in the agglomerate.

Particles interacting with cohesive forces are not considered to be part of an agglomerate

until they are in contact.

Void Fraction

The void fraction of an agglomerate is defined as the fraction of a bounding sphere’s volume

that does not contain particles. The bounding sphere is defined as the smallest sphere into

which the agglomerate can fit, as shown in Figure 6.4. The void fraction can be calculated

with Equation 6.6 where
∑
Vp is the sum of the particle volumes and Vbs is the volume

of the bounding sphere. This is a useful statistic because it provides some insight into the

structure of an agglomerate. A high void fraction means that the agglomerate has a lower

density and so is likely longer and thinner. A low void fraction indicates a tightly packed

spherical agglomerate.

Void Fraction = 1−
∑
Vp

Vbs
(6.6)
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Particle Body Surface

Bounding Sphere

Figure 6.4: The bounding sphere of an agglomerate.

.

6.2.2 General Behaviour

In general the simulations show that the particles initially spread out but are drawn to-

gether at the ‘corners’ of the vortices. Particles begin to bunch up in these areas and form

agglomerates. The sizes and shapes of the agglomerates that form depend on the Stokes

and Stickiness numbers.

Figure 6.5 shows how the particles are arranged in the flow. The particle traces show

where the vortices are located. By comparing this with Figure 6.1 it is evident that the

agglomerates are formed where the flow comes together in the corners of the vortices and

are elongated by the flow then pulling them apart.

Figure 6.5: A 2D projection of agglomerates in a Taylor-Green Vortex Flow with particle

traces to show the locations of the vortices.

To determine the effect of changes in properties the simulation must reach a statistically

static state. Agglomerates may continue forming and breaking up, but the mean size and

void fraction should tend to some value. This behaviour is shown in Figure 6.6.
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For some simulations a fully statistically static state was not achieved. In some cases there

was a rapid increase in mean size and void fraction at the end of the simulation and in

others the statistics had not settled completely. These effects can be seen in Figure 6.7. To

reduce the impact of this on the final values the overall value for the mean size and mean

void fraction have been determined by finding an average of each property between t = 500s

and t = 550s. This provides more stable results for later analysis. Further analysis could be

performed to ascertain the causes of these effects, however the results of these simulations

are sufficient to determine the general trends in the simulations.

Figure 6.6: Mean and standard deviation graphs for agglomerate size and void fraction in

a simulation with Stk = 5 and Sy = 1.5. These graphs show the simulation coming to a

statistically static state.
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Figure 6.7: Mean and standard deviation graphs for agglomerate size and void fraction in

a simulation with Stk = 1 and Sy = 0.1. These graphs show how a statistically static state

is not always perfectly achieved.

6.2.3 Variation with Stokes and Stickiness

Simulations were performed with Stokes Numbers of 0.1, 1, 5, and 10 and Stickiness Numbers

of 0.1, 0.6, 1, and 1.5. Figure 6.8 shows the results of these simulations, graphed as mean

size and mean void fraction.

Size

The graph of mean size shows that for small Stokes Numbers the agglomerate size is very

large. This is because the particles are very quickly brought together by the vortices and

then stay together due to the Stickiness. The agglomerate size is thus influenced by the

initial conditions, this effect is discussed further in Section 6.2.4. For the lowest Stickiness

Number value the agglomerate size is very small, this is where very few agglomerates are

formed because the cohesion force is not strong enough.
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For larger Stokes Numbers the particles are more free to move around. The general trend is

that the mean agglomerate size increases as the Stokes Number increases and also increases

as the Stickiness Number increases.

Void Fraction

The graph of mean void fraction shows similar trends. The void fraction of agglomerates

for low Stokes Numbers is quite high, except for very low Stickiness Numbers. For low

Stickiness Numbers there are very few agglomerates and so the void fraction is decreased

by the many particles that are on their own and thus have a void fraction of 0.

For higher Stokes Numbers the void fraction increases with Stokes Number, however the

trend with Stickiness Numbers is less clear. More data points would be required to draw

any clear conclusions from the Stickiness Number trends.

Figure 6.8: Graphs of mean size (left) and mean void fraction (right) against varying

Stokes Number and Stickiness Number.

6.2.4 Variation with Initial Conditions

Some simulations with high Stickiness Numbers (Sy = 1.5) were performed with different

initial distributions of particles. At high Stokes Numbers, where the particles were in the

inertial regime, this had no effect on the results. However, at low Stokes Numbers, where

the particles were in the viscous regime, this had a significant effect because the particles

are very quickly drawn together by the flow and rapidly form stable agglomerates due to

the high Stickiness Number. With a smaller initial spread of particles the agglomerates are

much larger because the particles are drawn to the same vortex corners. With a larger initial

spread of particles the agglomerates are much smaller because the particles are drawn to

vortex corners further apart. This effect is clearly observable in Figure 6.9. This effect also
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causes the void fraction to be lower because the particles form more spherical agglomerates

due to the larger size.

Figure 6.9: Two sets of simulations with different initial particle spreads. Left images are

at t = 0, Right images are at t = 60. The top (blue) images are for a small initial spread

and the bottom (red) images are for a larger initial spread. For these simulations Stk = 1

and Sy = 1.5.

6.3 Recommendations for Future Analysis

Section 6.2.4 shows that the results for low Stokes Numbers are very sensitive to initial

conditions. Further analysis of this sensitivity would be valuable. It would likely be most

useful to distribute particles evenly across the domain. Giving the particles the local flow

velocity as their initial velocity could also improve the predictability of the results.

Further analysis of variation of agglomerate properties with a variation in Stokes Num-

ber and Stickiness Number would be especially interesting in the ranges 0 < Stk < 5 and

0 < Sy < 0.6. This is the area with the most variation and likely contains the most

interesting insights into agglomerate formation.
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Conclusion

This project has successfully met all of its aims and objectives from Section 1.2. A simple

particle simulation was developed with Python and provided some useful insights into how

the DEM works and how best to implement it. A GPU based particle simulation was

developed using OpenCL and was capable of running simulations with large numbers of

particles. This simulation was then used to observe how agglomerates form with varying

simulation properties. The analysis provides a strong basis for future analysis of agglomerate

formation in Taylor-Green Vortex flow.

7.1 Further Work

7.1.1 Simulation Improvements

Particle Rotation

The DEM implementations in this project do not consider particle rotation. Future work

could implement particle rotations to improve the simulation accuracy and give the simula-

tion broader applicability. It is recommended that rotations be implemented using quater-

nions rather than Euler angles. Quaternions avoid problems such as gimbal lock and simplify

rotation calculations.

Polyhedral Particles

This project only considers spherical particles, an implementation of polyhedral particles

could give the simulation broader applicability. This would require particle rotation to be

considered but would allow for analysis of more complex particle populations and more

varied simulation parameters.

Collision Detection Algorithms

The spatial zoning algorithm in this project is simple but is not the most efficient algorithm

available. Other algorithms, such as triangulation[13], could be implemented to improve the

efficiency of the simulation. More advanced algorithms could also simplify the implementa-

tion of better models, particularly friction models, that require collision history.
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Particle-Fluid Interaction

This project assumes that the particle does not significantly affect the fluid, thus vastly

simplifying the simulation. However, particle interaction with the fluid could affect how the

particles move and how groups of particles affect each other through the fluid. This would

require a computational fluid dynamics code to be built into the simulation.

7.1.2 Additional Analysis

Additional analysis of agglomeration behaviour in Taylor-Green Vortex flow could be of

value. Observing how agglomerates form with other properties, for example, could lead to

a greater understanding of the overall system. Some interesting properties to vary would

be the size of the vortices, the standard deviation of particle masses, and variation of initial

conditions.
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Derivations

A.1 Normal Collision

mẍ = keδ − ηẋ

δ = db − x

mẍ = kedb − kex− ηẋ

mẍ+ ηẋ+ kex = dbke

Complementary Function

Auxilliary Equation: mp2 + ηp+ ke = 0

p1,2 =
−η ±

√
η2 − 4mke
2m

For this case η2 > 4mke so p1 and p2 are complex.

Let: a =
−η
2m

and b =

√
4mke − η2

2m

x = eat(A1sin(bt) +A2cos(bt))

Particular Integral

Ansatz: x = B

ẋ = ẍ = 0

keB = dbke

B = db

x = db
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General Solution

x = eat(A1sin(bt) +A2cos(bt)) + db

x(0) = db = A2 + db

A2 = 0

ẋ(0) = u0 = A1b

A1 =
u0
b

x = eat
u0
b
sin(bt) + db

ẋ = u0e
at(
a

b
sin(bt) + cos(bt))

A.1.1 Collision Duration

The duration of a collision is considered to be the time for which the particles’ body surfaces

are touching. For the normal collision used in Section A.1 this is from t = 0 until some tcol

when the moving particle returns to its starting position.

Let: a =
−η
2m

and b =

√
4mke − η2

2m

x = eat
u0
b
sin(bt) + db

At t = tcol, x = db

eatcol
u0
b
sin(btcol) = 0

sin(btcol) = 0

tcol =
sin−1(0)

b

tcol =
0 + nπ

b
=
nπ

b
, n ∈ Z

n = 0 Initial conditions.

n = 1 First crossing after collision, physical result for tcol.

tcol =
π

b
=

2πm√
4mke − η2

This can be rearranged to use the coefficient of restitution:

tcol =

√
m

ke

√
π2 + ln(ε)2

A.1.2 Coefficient of Restitution

The coefficient of restitution, ε, is the ratio of the speeds before (u0) and after (u1) the

collision. Since the x velocity after the collision is in the opposite direction to the x velocity

before the collision, ε =
−u1
u0

. The velocity after the collision is determined by finding the

64



APPENDIX A. DERIVATIONS Elijah Andrews

velocity at t = tcol where tcol is the collision duration determined in Section A.1.1.

From Section A.1: ẋ = u0e
at(
a

b
sin(bt) + cos(bt))

From Section A.1.1: tcol =
π

b

u1 = u0e
atcol(

a

b
sin(btcol) + cos(btcol))

u1 = u0e
aπ/b(

a

b
sin(π) + cos(π))

u1 = −u0eaπ/b

ε =
−u1
u0

=
u0e

aπ/b

u0
= eaπ/b

To determine the damping coefficient for a given ε:

ln(ε) =
aπ

b
=

−ηπ√
4mke − η2

η2 =
4mkeln(ε)2

π2 + ln(ε)2

η = ±

√
4mkeln(ε)2

π2 + ln(ε)2

η must be +ve, ln(ε) is -ve so we take the -ve square root.

η = −

√
4mkeln(ε)2

π2 + ln(ε)2
= −2ln(ε)

√
mke

π2 + ln(ε)2

This equation matches the one found in Tuley[10].

A.2 Normal Collision with Cohesion

A normal collision with cohesion has three regimes.

m
du

dt
= 0 for x > de

m
du

dt
= −kcδe for de > x > db

m
du

dt
= mẍ = keδb − ηẋ− kcδe for x < db

Two important definitions are those of body overlap (δb) and effect overlap (δe).

δb = db − x

δe = de − x
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A.2.1 Cohesion Only, Incoming (de > x > db, u < 0)

mẍ = −kcδe = −kc(de − x)

mẍ− kcx = −kcde

Complementary Function

Auxilliary Equation: mp2 − kc = 0

p = ±
√
kc
m

x = A1e
t
√
kc/m +A2e

−t
√
kc/m

Particular Integral

Ansatz: x = B

ẋ = ẍ = 0

− kcx = −kcde
− kcB = −kcde
B = de

General Solution

x = A1e
t
√
kc/m +A2e

−t
√
kc/m + de

ẋ =

√
kc
m
A1e

t
√
kc/m −

√
kc
m
A2e

−t
√
kc/m

x(0) = de = A1 +A2 + de

A1 = −A2

ẋ(0) = u0 =

√
kc
m
A1 −

√
kc
m
A2

A1 =
u0
2

√
m

kc

x =
u0
2

√
m

kc
et
√
kc/m − u0

2

√
m

kc
e−t
√
kc/m + de

x = u0

√
m

kc
sinh

(
t

√
kc
m

)
+ de

ẋ =
u0
2
et
√
kc/m +

u0
2
e−t
√
kc/m

ẋ = u0cosh
(
t

√
kc
m

)
Two important results from this solution are the impact time (ti) and impact velocity (ui).

66



APPENDIX A. DERIVATIONS Elijah Andrews

Impact Time (ti)

At impact: x = db

db =
u0
2

√
m

kc
eti
√
kc/m − u0

2

√
m

kc
e−ti
√
kc/m + de

2(db − de)
u0

√
kc
m

= et
√
kc/m − e−t

√
kc/m = 2sinh(

√
kc
m
t)

ti =

√
m

kc
sinh−1

(
db − de
u0

√
kc
m

)

Impact Velocity (ui)

ui =
u0
2
eti
√
kc/m +

u0
2
e−ti
√
kc/m

ui = u0cosh
(
ti

√
kc
m

)
A.2.2 Full Contact (x < db)

m
du

dt
= mẍ = keδb − ηẋ− kcδe

mẍ+ ηẋ+ (ke − kc)x = kedb − kcde

Complementary Function

Auxilliary Equation: mp2 + ηp+ ke − kc = 0

p1,2 =
−η ±

√
η2 − 4m(ke − kc)

2m

For this case ke > kc and η2 > 4m(ke − kc) so p1 and p2 are complex.

Let: a =
−η
2m

and b =

√
4mke − η2

2m

x = eat(A1sin(bt) +A2cos(bt))

Particular Integral

Ansatz: x = B

ẋ = ẍ = 0

(ke − kc)B = kedb − kcde

B =
kedb − kcde
ke − kc
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General Solution

x = eat(A1sin(bt) +A2cos(bt)) +
kedb − kcde
ke − kc

ẋ = eat((A1a−A2b)sin(bt) + (A1b+A2a)cos(bt))

To simplify the result the t here is t− ti in the overall collision.

x(0) = db

A2 +
kedb − kcde
ke − kc

= db

A2 =
kc(de − db)
ke − kc

Let: c =
kc(de − db)
ke − kc

ẋ(0) = aA2 + bA1 = ui

A1 =
ui − aA2

b
=
ui − ac

b

x = eat(
ui − ac

b
sin(bt) + ccos(bt)) +

kedb − kcde
ke − kc

ẋ = eat
((ui − ac

b
a− cb

)
sin(bt) + uicos(bt)

)
The position cannot be analytically solved for t in order to find the initial return velocity. A

reasonable estimation for this is to use tcol =
π

b
, and other results, from Section A.1. Thus

the initial return velocity, ur, can be found to be ur = −εui.
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A.2.3 Cohesion Only, Returning (de > x > db, u > 0)

The General Solution to the returning equation is the same as the incoming equation.

General Solution

x = A1e
t
√
kc/m +A2e

−t
√
kc/m + de

ẋ =

√
kc
m
A1e

t
√
kc/m −

√
kc
m
A2e

−t
√
kc/m

To simplify the result the t here is t− tr in the overall collision.

Where tr is the return time.

x(0) = db = A1 +A2 + de

A1 +A2 = (db − de)

ẋ(0) = ur =

√
kc
m
A1 −

√
kc
m
A2

A1 =
1

2

(
db − de + ur

√
m

kc

)
A2 =

1

2

(
db − de − ur

√
m

kc

)
A1 =

u0
2

√
m

kc

x = (db − de)cosh
(√kc

m
t
)

+ ur

√
m

kc
sinh

(√kc
m
t
)

+ de

ẋ =

√
kc
m

(db − de)sinh
(√kc

m
t
)

+ urcosh
(√kc

m
t
)

A.3 Stickiness Number

Taking the results from Section A.2 it is known that if the particle is to escape the collision

the position, x, will at some point return to de. Thus, using the solution for the returning
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collision section (see Section A.2.3), the position equation can be solved for t:

de = (db − de)cosh
(√kc

m
t
)

+ ur

√
m

kc
sinh

(√kc
m
t
)

+ de

(db − de)cosh
(√kc

m
t
)

+ ur

√
m

kc
sinh

(√kc
m
t
)

= 0

tanh(

√
kc
m
t) =

de − db

ur

√
m

kc

This only has a solution when the RHS is less than 1.

Thus, for a particle to stick in a collision:

de − db
ur

√
kc
m
> 1

ur is the velocity of the particle as it returns from the contact collision. Although not precise,

the non-cohesion restitution coefficient ε provides a good approximation for a relationship

between the impact velocity ui and the return velocity ur.

ur = −εui
ui relates to u0 by the relationship from Section A.2.1:

ui = u0cosh
(
ti

√
kc
m

)
= u0cosh

(
sinh−1

(db − de
u0

√
kc
m

))
de − db
ur

√
kc
m

=
de − db

−εu0cosh
(
sinh−1

(db − de
u0

√
kc
m

))
√
kc
m

de − db
ur

√
kc
m

=
(db − de)

√
kc

ε
√

(db − de)2kc + u20m

Finding the dimensions of this number:

Dimensions of stiffness: [M ][L][T ]−2[L]−1 = [M ][T ]−2

[L]([M ][T ]−2)0.5

[1]([L]2[M ][T ]−2 + [L]2[T ]−2[M ])0.5

=
[L][M ]0.5[T ]−1

[L][T ]−1[M ]0.5
= [1]

This shows that the number is dimensionless.
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A.4 Dynamic Friction Sliding

Fn = mg

F dynamict = −µ|Fn|
du

dt
= ẍ =

−µmg
m

= −µg

ẋ = −µgt+ u0

x =
−µg

2
t2 + u0t+ x0
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A.5 Particle Drag

m
du

dt
=
m

τ
(uf − u)

ẍ+
1

τ
ẋ =

uf
τ

Complementary Function

Auxilliary Equation: p2 +
1

τ
p = 0

p1 = 0, p2 = −1

τ

x = A1e
0t +A2e

−t/τ

Particular Integral

Ansatz: x = Bt

ẋ = B

ẍ = 0

B

τ
=
uf
τ

B = uf

General Solution

x = A1 +A2e
−t/τ + uf t

ẋ =
−A2

τ
e−t/τ + uf

x(0) = 0 = A1 +A2

ẋ(0) = 0 =
−A2

τ
+ uf

A2 = ufτ

A1 = −ufτ

x = ufτ(e−t/τ − 1) + uf t

ẋ = uf (1− e−t/τ )

72



Bibliography

[1] Andrew Chow. Programming gpu cards with opencl to predict the motion of billions

of particles. 2017.

[2] Peter Alan Cundall. The measurement and analysis of accelerations in rock slopes. PhD

thesis, Imperial College London, 1971.

[3] Nicolin Govender, Daniel N. Wilke, and Schalk Kok. Blaze-DEMGPU: Modular high

performance DEM framework for the GPU architecture. SoftwareX, 5:62 – 66, 2016.

[4] J.Q. Gan, Z.Y. Zhou, and A.B. Yu. A GPU-based DEM approach for modelling of

particulate systems. Powder Technology, 301(Supplement C):1172 – 1182, 2016.

[5] Ji Qi, Kuan-Ching Li, Hai Jiang, Qingguo Zhou, and Lei Yang. Gpu-accelerated dem

implementation with cuda. volume 11, pages 330 – 337, 2015.

[6] Nicolin Govender, Daniel N. Wilke, and Schalk Kok. Collision detection of convex

polyhedra on the nvidia gpu architecture for the discrete element method. Applied

Mathematics and Computation, 267:810 – 829, 2015.

[7] In Soo Seo, Ju Hyeon Kim, Jae Ho Shin, Sang Woo Shin, and Sang Hwan Lee. Particle

behaviors of printing system using gpu-based discrete element method. Journal of

Mechanical Science and Technology, 28(12):5083 – 5087, 2014.

[8] Sebastian Kuckuk, Tobias Preclik, and Harald Köstler. Interactive particle dynamics
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